OFFSET
0,3
COMMENTS
This also counts pairs (f,g) satisfying f(x) = g(f^{r}(x)) for r > 1. - David Einstein, Nov 18 2016
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..263
FORMULA
a(n) = Sum_{k=1..n} k! * C(n, k) * (n*k)^(n-k). - David Einstein, Oct 10 2016
a(n) = n! * [x^n] 1/(1 - x*exp(n*x)). - Ilya Gutkovskiy, Nov 26 2017
log(a(n)) ~ log(sqrt(2*Pi) * n^(2*n - n/LambertW(exp(1)*n) + 1/2) / (LambertW(exp(1)*n) * exp(n/LambertW(exp(1)*n)) * (LambertW(exp(1)*n) - 1)^(n*(1 - 1/LambertW(exp(1)*n))))). - Vaclav Kotesovec, Feb 20 2022
More precise asymptotics: a(n) ~ sqrt(2*Pi) * (w^2 - w - 1 + 2/w) * exp(n*(1/w^3 - 1/w)) * n^(2*n + n/w^3 - n/w + 1/2) * (w^2 - 1)^(n*(1 + 1/w^3 - 1/w)) * (1 - w^2 + w^3)^(n/w - n - n/w^3 - 1), where w = LambertW(exp(1)*n). - Vaclav Kotesovec, Feb 23 2022
MAPLE
a:= proc(n) option remember; local b; b:=
proc(m, i) option remember; `if`(m=0, n^i, `if`(i<1, 0,
add(b(m-j, i-1)*binomial(m, j)*j, j=0..m)))
end: forget(b):
b(n$2)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 23 2014
MATHEMATICA
a[n_] := If[n==0, 1, Sum[k! Binomial[n, k] (n k)^(n - k), {k, 1, n}]]
Table[a[n], {n, 20}] (* David Einstein, Oct 10 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Chad Brewbaker, Mar 26 2014
EXTENSIONS
a(6)-a(7) from Giovanni Resta, Mar 26 2014
a(8)-a(17) from Alois P. Heinz, Jul 23 2014
STATUS
approved