login
A235241
Number of (n+1) X (1+1) 0..7 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 6, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
1
210, 906, 3746, 16150, 66874, 288510, 1195458, 5161934, 21400266, 92486622, 383623154, 1659369022, 6886195834, 29811968622, 123773981922, 536299705358, 2227615662378, 9660029955390, 40141785286994, 174215753195230
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + 39*a(n-2) - 152*a(n-3) - 441*a(n-4) + 1612*a(n-5) + 1185*a(n-6) - 3128*a(n-7) - 782*a(n-8).
Empirical g.f.: 2*x*(105 + 33*x - 4034*x^2 - 1124*x^3 + 43251*x^4 + 10791*x^5 - 84602*x^6 - 20036*x^7) / ((1 - 4*x - x^2)*(1 - 17*x^2)*(1 - 21*x^2 + 46*x^4)). - Colin Barker, Oct 17 2018
EXAMPLE
Some solutions for n=4:
4 1 0 1 3 7 5 7 4 6 6 2 5 6 4 7 4 2 4 2
1 4 5 0 6 4 7 3 5 1 1 3 7 2 5 2 3 7 3 7
3 0 6 7 3 7 4 6 2 4 4 0 5 6 2 5 2 0 7 5
1 4 7 2 2 0 5 1 6 2 2 4 7 2 4 1 3 7 2 6
3 0 6 7 1 5 0 2 1 3 4 0 0 1 2 5 4 2 4 2
CROSSREFS
Column 1 of A235248.
Sequence in context: A009127 A158559 A235248 * A046302 A217532 A289319
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 05 2014
STATUS
approved