login
Decimal expansion of exp(exp(1) + 1).
1

%I #33 Oct 22 2022 16:19:08

%S 4,1,1,9,3,5,5,5,6,7,4,7,1,6,1,2,3,5,6,3,1,8,8,2,8,7,6,8,4,3,6,4,3,3,

%T 1,9,7,7,8,5,7,6,8,3,0,4,2,8,6,3,1,5,7,7,8,3,0,8,8,0,4,4,2,2,3,2,3,9,

%U 1,4,7,7,4,7,1,7,9,8,9,6,3,0,7,0,4,5,4,7,2,2,3,4,8,6,6,9,6,2,9,4,2,7,2,3,4

%N Decimal expansion of exp(exp(1) + 1).

%C May also be written as e*(e^e).

%H Ovidiu Furdui, <a href="http://www.jstor.org/stable/27821752">Solution to problem 91.H</a>, Mathematical Gazette 92(523), 2008, pp. 174-175.

%F Equals Sum_{n>=0} A005493(n)/n!.

%F Equals 2*lim_{n->oo} n*(exp(Sum_{k=0..n} 1/k!) - ((1+1/n)^n)^e). See the Mathematical Gazette link. - _Michel Marcus_, Oct 24 2017

%F Equals Sum_{k>=1} e^k/(k-1)!. - _Amiram Eldar_, Jul 28 2020

%e 41.19355567471612356318828...

%t RealDigits[E^(E + 1), 10, 100][[1]] (* _Alonso del Arte_, Jan 05 2014 *)

%o (PARI) exp(exp(1)+1) \\ _Charles R Greathouse IV_, Jan 14 2014

%Y Cf. A005493, A234473 (e^e/e), A073226 (e^e), A001113 (e).

%Y Cf. A061354, A061355.

%K nonn,cons

%O 2,1

%A _Richard R. Forberg_, Jan 04 2014

%E More terms from _Rick L. Shepherd_, Jan 25 2014