%I #24 Mar 10 2022 04:40:15
%S 3,3,7,2,2,8,1,3,2,3,2,6,9,0,1,4,3,2,9,9,2,5,3,0,5,7,3,4,1,0,9,4,6,4,
%T 6,5,9,1,1,0,1,3,2,2,2,8,9,9,1,3,9,6,1,8,3,8,4,9,9,3,8,7,3,5,2,8,2,9,
%U 5,0,3,6,0,7,2,8,7,0,2,3,1,3,5,1,3,5,6,2,6,8,2,7,9,8,3,9,4
%N Decimal expansion of (sqrt(33) + 1) / 2.
%C Solution of y^2 - y - 8 = 0.
%C Decimal expansion of sqrt(8 + sqrt(8 + sqrt(8 + sqrt(8 + ... )))).
%C The sequence with a(1) = 2 is decimal expansion of sqrt(8 - sqrt(8 - sqrt(8 - sqrt(8 - ... )))).
%C A basis for the integers of the real quadratic number field K(sqrt(33)) is
%C <1, omega(33)>, where omega(33) = (1 + sqrt(33))/2. - _Wolfdieter Lang_, Feb 11 2020
%H Christopher M. Conrey, <a href="/A235162/b235162.txt">Table of n, a(n) for n = 1..10000</a>
%e 3.37228132326901432992530573410946465911013222899139618384993873528...
%t RealDigits[(1 + Sqrt[33])/2, 10, 130]
%o (MATLAB) val = vpa((sqrt(sym(33))+1)/2,10001); list = char(val)-'0'; list = list([1,3:end-1]); % _Christopher M. Conrey_, Jan 26 2022
%Y Cf. A001622, A010488, A209927, A222132, A222134, A223140.
%K nonn,cons
%O 1,1
%A _Jaroslav Krizek_, Feb 06 2014