This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A235145 a(n) = Number of steps to reach a fixed point or 2-cycle, when iterating A235027 starting from value n. 8
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,140 COMMENTS Equally, a(n) = minimum number of steps needed to repeat k = A235027(k)(starting from k = n) until A001222(A235027(k)) = A001222(k). Or in other words, how many times are needed to repeatedly factorize the number, to reverse the bits of each odd prime factor (with A056539) and factorize and bit-reverse the reversed factors again, until the number of prime divisors no more grows, meaning that we have found either a fixed point or entered a cycle of two. LINKS Antti Karttunen, Table of n, a(n) for n = 0..10001 FORMULA If A235027(A235027(n)) = n, a(n)=0, otherwise 1+a(A235027(n)). Equally, if A001222(A235027(n)) = A001222(n), a(n)=0, otherwise 1+a(A235027(n)). a(2n) = a(n), and in general, for composite values a(u * v) = max(a(u),a(v)). For composite n, a(n) = Max_{p|n} a(p). [The above reduces to this: select the maximal value from all values a(p) computed for primes p dividing n] For prime p, a(p) = 0 if A056539(p) is also prime (p is 2 or in A074832), otherwise a(p) = 1+a(A056539(p)). EXAMPLE 19, '10011' in binary, when reversed, yields '11001' = 25, when factored, yields 5 * 5, ('101' * '101' in binary), which divisors stay same when reversed, thus it took one iteration step to reach a point where the number of prime divisors no more grows. Thus a(19)=1. PROG (Scheme, two alternative definitions using memoizing definec-macro from Antti Karttunen's IntSeq-library) (definec (A235145 n) (cond ((= (A235027 (A235027 n)) n) 0) (else (+ 1 (A235145 (A235027 n)))))) (definec (A235145 n) (cond ((= (A001222 (A235027 n)) (A001222 n)) 0) (else (+ 1 (A235145 (A235027 n)))))) (PARI) revbits(n) = fromdigits(Vecrev(binary(n)), 2); a235027(n) = {f = factor(n); for (k=1, #f~, if (f[k, 1] != 2, f[k, 1] = revbits(f[k, 1]); ); ); factorback(f); } find(v, newn) = {for (k=1, #v, if (v[#v -k + 1] == newn, return (k)); ); return (0); } a(n) = {ok = 0; v = [n]; while (! ok, newn = a235027(n); ind = find(v, newn); if (ind, ok = 1, v = concat(v, newn); n = newn); ); #v - ind; } \\ Michel Marcus, Aug 06 2017 CROSSREFS A235146 gives the positions of records. Cf. A001222, A056539, A074832, A235027. Sequence in context: A160338 A216579 A229878 * A266342 A285936 A321740 Adjacent sequences:  A235142 A235143 A235144 * A235146 A235147 A235148 KEYWORD nonn,base AUTHOR Antti Karttunen, Jan 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 13:31 EDT 2019. Contains 322461 sequences. (Running on oeis4.)