%I #5 Jan 08 2014 03:32:42
%S 0,0,0,0,7,0,0,7,0,0,12,0,16,11,0,0,16,6,0,15,0,0,22,0,8,5,0,28,24,0,
%T 0,23,11,0,56,0,0,27,30,0,71,0,63,31,0,69,36,6,0,35,0,0,50,0,0,99,0,
%U 42,44,6,72,43,106,0,84,0,1,47,0,0,91,6,36,51,0,0,112,138,0,55,102,0,78,0,115,136,0,79,67,0,0,63,23,42,136,0,0,67,0,0,111
%N Numerator(m*Bernoulli(m-1)+1) (mod m), for m = 1, 3, 5, 7, 9, ...
%C a(n) = numerator((2*n+1)*Bernoulli(2*n)+1) (mod 2*n+1), for n = 0, 1, 2, 3, ...
%C The Agoh-Giuga Conjecture is that a(n)=0 iff 2*n+1 is 1 or a prime.
%H MathWorld, <a href="http://mathworld.wolfram.com/GiugasConjecture.html">Giuga's Conjecture</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Agoh-Giuga_conjecture">Agoh-Giuga conjecture</a>
%F a(n) = 0 iff A235363(n) = 0.
%t Table[ Mod[ Numerator[ n*BernoulliB[n - 1] + 1], n], {n, 1, 201, 2}]
%Y Cf. A007850, A046094, A204187, A228037, A235363.
%K nonn
%O 0,5
%A _Jonathan Sondow_, Jan 07 2014