login
A235135
E.g.f. 1/(1 - sinh(3*x))^(1/3).
2
1, 1, 4, 37, 424, 6241, 113824, 2460277, 61504384, 1746727201, 55545439744, 1955176596517, 75470959673344, 3169939381277761, 143927870364811264, 7024566555751464757, 366742587098140770304, 20394984041632355113921, 1203587891190987380752384, 75124090160952970927512997
OFFSET
0,3
COMMENTS
Generally, for e.g.f. 1/(1-sinh(p*x))^(1/p) we have a(n) ~ n! * p^n / (Gamma(1/p) * 2^(1/(2*p)) * n^(1-1/p) * (arcsinh(1))^(n+1/p)).
FORMULA
a(n) ~ n! * 3^n / (Gamma(1/3) * 2^(1/6) * n^(2/3) * (log(1+sqrt(2)))^(n+1/3)).
MATHEMATICA
CoefficientList[Series[1/(1-Sinh[3*x])^(1/3), {x, 0, 20}], x] * Range[0, 20]!
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 03 2014
STATUS
approved