OFFSET
0,3
COMMENTS
Generally, for e.g.f. 1/(1-sinh(p*x))^(1/p) we have a(n) ~ n! * p^n / (Gamma(1/p) * 2^(1/(2*p)) * n^(1-1/p) * (arcsinh(1))^(n+1/p)).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..395
FORMULA
a(n) ~ n! * 2^(n-1/4) / (sqrt(Pi*n) * (log(1+sqrt(2)))^(n+1/2)).
MATHEMATICA
CoefficientList[Series[1/(1-Sinh[2*x])^(1/2), {x, 0, 20}], x] * Range[0, 20]!
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(1/(sqrt(1-sinh(2*x))))) \\ G. C. Greubel, Apr 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 03 2014
STATUS
approved