login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235120 a(n) = b((n+1)/2)^2 if n is odd and a(n) = b(n/2)b(n/2+1) if n is even, where b = A057452. 2
64, 152, 361, 1273, 4489, 22177, 109561, 735151, 4932841, 43480517, 383258929, 4299363701, 48229869769, 668098103693, 9254743549921, 154323135646769, 2573343071840641, 50602620151819037, 995057827403377609, 22686465423182125223, 517231963031027272681 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) = the Matula number of the rooted tree obtained by identifying the roots of the trees Q(floor((n+1)/2)) and Q(ceil((n+1)/2)) defined in A057452.

REFERENCES

D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

LINKS

Table of n, a(n) for n=1..21.

E. Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288, 2011

E. Deutsch, Rooted tree statistics from Matula numbers, Discrete Appl. Math., 160, 2012, 2314-2322.

F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.

I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.

I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.

MAPLE

b := proc (n) option remember: if n = 1 then 8 else ithprime(b(n-1)) end if: end proc: a := proc (n) if `mod`(n, 2) = 1 then b((1/2)*n+1/2)^2 else b((1/2)*n)*b((1/2)*n+1) end if end proc: seq(a(n), n = 1 .. 17);

MATHEMATICA

b[1] = 8; b[n_] := b[n] = Prime[b[n-1]];

a[n_] := If[OddQ[n], b[(n+1)/2]^2, b[n/2]*b[n/2 + 1]];

Array[a, 21] (* Jean-Fran├žois Alcover, Nov 26 2017, from Maple *)

CROSSREFS

Cf. A057452.

Sequence in context: A188244 A044315 A044696 * A195233 A086052 A044396

Adjacent sequences:  A235117 A235118 A235119 * A235121 A235122 A235123

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Jan 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 04:32 EDT 2019. Contains 321481 sequences. (Running on oeis4.)