login
A235085
Number of (n+1) X (6+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
1
2554, 4514, 7810, 14702, 27218, 53590, 103702, 210318, 418838, 866298, 1758206, 3687018, 7583258, 16071562, 33396914, 71419678, 149733442, 322890902, 682659526, 1484242286, 3164667686, 6938097082, 14923990510, 32998428714
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) +4*a(n-2) -87*a(n-3) +90*a(n-4) +450*a(n-5) -830*a(n-6) -936*a(n-7) +2737*a(n-8) +408*a(n-9) -4078*a(n-10) +891*a(n-11) +2766*a(n-12) -816*a(n-13) -904*a(n-14) +180*a(n-15) +120*a(n-16).
EXAMPLE
Some solutions for n=5:
0 2 1 3 1 2 0 1 0 2 1 2 1 2 3 4 2 3 2 4 1
2 0 3 1 3 0 2 0 3 1 4 1 4 1 4 1 3 0 3 1 2
0 2 1 3 1 2 0 1 0 2 1 2 1 2 3 4 2 3 2 4 1
2 0 3 1 3 0 2 0 3 1 4 1 4 1 4 1 3 0 3 1 2
0 2 1 3 1 2 0 3 2 4 3 4 3 4 2 3 1 2 1 3 0
3 1 4 2 4 1 3 0 3 1 4 1 4 1 4 1 3 0 3 1 2
CROSSREFS
Column 6 of A235087.
Sequence in context: A050413 A050544 A185516 * A252685 A255030 A255037
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 03 2014
STATUS
approved