login
A235078
T(n,k) is the number of (n+1) X (k+1) 0..7 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 3, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
7
288, 1828, 1828, 11976, 12228, 11976, 79848, 86704, 86704, 79848, 534008, 644188, 676192, 644188, 534008, 3577048, 4832976, 5686836, 5686836, 4832976, 3577048, 23966856, 36598068, 48272960, 55735596, 48272960, 36598068, 23966856
OFFSET
1,1
COMMENTS
Table starts
288 1828 11976 79848 534008
1828 12228 86704 644188 4832976
11976 86704 676192 5686836 48272960
79848 644188 5686836 55735596 552618120
534008 4832976 48272960 552618120 6369625168
3577048 36598068 417137872 5629225056 76480296484
23966856 278216484 3604917936 57334595276 910186153752
160608008 2124989472 31461207572 593260934340 11128033519340
1076281720 16281513720 274289989296 6129703359580
7212695512 125246817248 2412618175328
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 61*a(n-2) -813*a(n-4) +4271*a(n-6) -9694*a(n-8) +8264*a(n-10) -1536*a(n-12).
k=2: [order 73].
EXAMPLE
Some solutions for n=2, k=4:
4 7 2 0 4 2 3 2 6 2 6 4 0 4 2 6 4 0 2 0
0 6 4 5 6 0 4 6 7 6 4 5 4 5 0 2 3 2 7 2
4 7 2 6 4 2 3 2 0 2 0 4 0 4 2 4 2 4 6 4
CROSSREFS
Sequence in context: A250871 A128392 A296784 * A235072 A235769 A049230
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 03 2014
STATUS
approved