login
A235059
The greedy sequence of real numbers at least 1 that do not contain any 8-term geometric progressions with integer ratio.
0
1, 128, 256, 2304, 3456, 16384, 32768, 163840, 288000, 331776, 497664, 884736, 995328
OFFSET
1,2
COMMENTS
The union of the half-open intervals [a(2i-1),a(2i)) is the greedy set of real numbers at least 1 that does not contain any subset of the form {a, ar, ar^2, ar^3, ar^4, ar^5, ar^6, ar^7} with r an integer.
LINKS
M. B. Nathanson, K. O'Bryant, A problem of Rankin on sets without geometric progressions, arXiv preprint arXiv:1408.2880, 2014
CROSSREFS
A235054 through A235060 give the greedy sets avoiding k-term geometric progressions for 3 <= k <= 9.
Sequence in context: A256821 A172421 A355919 * A045053 A234877 A229360
KEYWORD
nonn,more
AUTHOR
Kevin O'Bryant, Jan 03 2014
STATUS
approved