login
A235057
The greedy sequence of real numbers at least 1 that do not contain any 6-term geometric progressions with integer ratio.
0
1, 32, 64, 243, 288, 576, 729, 1152, 2048, 3645, 4000, 10240, 20736, 21952, 92160, 100000, 102400, 207360, 219520, 518400, 548800, 921600
OFFSET
1,2
COMMENTS
The union of the half-open intervals [a(2i-1),a(2i)) is the greedy set of real numbers at least 1 that does not contain any subset of the form {a, ar, ar^2, ar^3, ar^4, ar^5} with r an integer.
LINKS
M. B. Nathanson, K. O'Bryant, A problem of Rankin on sets without geometric progressions, arXiv preprint arXiv:1408.2880, 2014
CROSSREFS
A235054 through A235060 give the greedy sets avoiding k-term geometric progressions for 3 <= k <= 9.
Sequence in context: A076469 A256819 A358250 * A339358 A249116 A110562
KEYWORD
nonn,more
AUTHOR
Kevin O'Bryant, Jan 03 2014
STATUS
approved