login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234971 a(n) = Sum_{k=0..n} n^k * binomial(n,k)^4. 4
1, 2, 37, 1000, 38401, 1896876, 112124629, 7679202336, 595411451905, 51348552829300, 4861414171762501, 500163335120177136, 55466421261812540929, 6585829687114412247800, 832587068884779776276661, 111541424966889778569909376, 15771414153994526723881828353 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, Sum_{k=0..n} n^k * binomial(n,k)^p is asymptotic to (1+n^(1/p))^(n*p+p-1) / sqrt(p * (2*Pi)^(p-1) * n^(p-1/p)).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200 [a(0)=1 inserted by Georg Fischer, Jan 04 2020]

Vaclav Kotesovec, Asymptotic of a sums of powers of binomial coefficients * x^k, 2012

FORMULA

a(n) ~ (1+n^(1/4))^(4*n+3) / (4*sqrt(2) * Pi^(3/2) * n^(15/8)).

a(n) = hypergeom([-n, -n, -n, -n], [1, 1, 1], n). - Peter Luschny, Dec 22 2020

MAPLE

a := n -> hypergeom([-n, -n, -n, -n], [1, 1, 1], n):

seq(simplify(a(n)), n=0..16); # Peter Luschny, Dec 22 2020

MATHEMATICA

Table[Sum[If[n==k==0, 1, n^k]*Binomial[n, k]^4, {k, 0, n}], {n, 0, 20}] (* offset adapted by Georg Fischer, Jan 04 2021 *)

PROG

(PARI) a(n) = sum(k=0, n, n^k * binomial(n, k)^4); \\ Michel Marcus, Jan 04 2021

CROSSREFS

Cf. A187021, A241247.

Sequence in context: A307318 A058245 A257995 * A139108 A165697 A320994

Adjacent sequences:  A234968 A234969 A234970 * A234972 A234973 A234974

KEYWORD

nonn,easy

AUTHOR

Vaclav Kotesovec, Apr 19 2014

EXTENSIONS

a(0) = 1 prepended by Peter Luschny, Dec 22 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 10:56 EDT 2021. Contains 343087 sequences. (Running on oeis4.)