login
A234912
Primes which become palindromic primes when the digits are rotated once to the left.
4
2, 3, 5, 7, 11, 101, 113, 331, 337, 991, 1013, 1019, 3037, 7079, 9091, 11131, 11383, 11393, 11939, 33151, 33353, 33757, 70079, 77191, 77323, 77747, 77797, 77969, 77999, 99787, 100019, 101141, 101333, 101383, 101747, 101797, 101939, 101999, 303151, 303727
OFFSET
1,1
EXAMPLE
The prime 113 is in the sequence because 131 is a palindromic prime.
PROG
(PARI) rotl(a) = my(b, c, d); b=#Str(a); c=floor(a/(10^(b-1))); d=a-c*(10^(b-1)); 10*d+c
revint(n) = my(m=n%10); n\=10; while(n>0, m=m*10+n%10; n\=10); m
s=[]; forprime(n=2, 1000000, r=rotl(n); if(isprime(r) && revint(r)==r, s=concat(s, n))); s
CROSSREFS
Cf. A235000.
Sequence in context: A083393 A182051 A052480 * A083137 A180440 A077652
KEYWORD
nonn,base
AUTHOR
Colin Barker, Jan 02 2014
STATUS
approved