|
|
A234898
|
|
T(n,k)=Number of (n+1)X(k+1) 0..6 arrays with every 2X2 subblock having its diagonal sum differing from its antidiagonal sum by 1, with no adjacent elements equal (constant stress tilted 1X1 tilings)
|
|
8
|
|
|
160, 760, 760, 3456, 4024, 3456, 16572, 20404, 20404, 16572, 76032, 115924, 113288, 115924, 76032, 365024, 625480, 743436, 743436, 625480, 365024, 1676576, 3640580, 4634504, 5941320, 4634504, 3640580, 1676576, 8050184, 19965444, 32110856
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
.......160........760........3456.........16572..........76032..........365024
.......760.......4024.......20404........115924.........625480.........3640580
......3456......20404......113288........743436........4634504........32110856
.....16572.....115924......743436.......5941320.......44518632.......385262124
.....76032.....625480.....4634504......44518632......399820568......4244726408
....365024....3640580....32110856.....385262124.....4244726408.....57645698844
...1676576...19965444...208211944....3064189932....41268054688....700047980248
...8050184..117487100..1482491852...27702518548...464573800208..10265376879740
..36980544..648180128..9763925800..225962416092..4675921747384.130326665117372
.177566656.3842929120.70741188392.2102864178560.54793760749712
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..112
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = 30*a(n-2) -194*a(n-4) +428*a(n-6) -288*a(n-8) +48*a(n-10)
k=2: [order 51]
|
|
EXAMPLE
|
Some solutions for n=3 k=4
..3..5..1..6..3....3..5..4..5..2....4..5..4..6..4....4..6..4..5..2
..0..3..0..4..0....0..3..1..3..1....0..2..0..1..0....0..1..0..2..0
..1..5..1..6..3....2..6..3..6..5....4..5..2..4..2....3..5..3..6..3
..0..3..0..4..2....0..5..1..3..1....2..4..0..3..0....2..3..0..4..0
|
|
CROSSREFS
|
Sequence in context: A233910 A234658 A234651 * A234891 A305272 A234450
Adjacent sequences: A234895 A234896 A234897 * A234899 A234900 A234901
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Jan 01 2014
|
|
STATUS
|
approved
|
|
|
|