%I #19 Apr 25 2023 14:09:21
%S 1,5,65,1110,21620,455126,10085845,231814440,5475346305,132090011900,
%T 3240886705386,80621405042750,2028732009726240,51548408940061460,
%U 1320738410528418175,34083616545621832176,885134579074202142075,23114512490211287029665
%N a(n) = 5*binomial(11*n+5,n)/(11*n+5).
%C Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=5.
%H Vincenzo Librandi, <a href="/A234871/b234871.txt">Table of n, a(n) for n = 0..200</a>
%H J-C. Aval, <a href="http://arxiv.org/pdf/0711.0906v1.pdf">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
%H Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a>
%H Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955.
%F G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=5.
%t Table[5 Binomial[11 n + 5, n]/(11 n + 5), {n, 0, 40}] (* _Vincenzo Librandi_, Jan 01 2014 *)
%o (PARI) a(n) = 5*binomial(11*n+5,n)/(11*n+5);
%o (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/5))^5+x*O(x^n)); polcoeff(B, n)}
%o (Magma) [5*Binomial(11*n+5,n)/(11*n+5): n in [0..30]]; // _Vincenzo Librandi_, Jan 01 2014
%Y Cf. A230388, A234868, A234869, A234870, A234872, A234873.
%K nonn
%O 0,2
%A _Tim Fulford_, Jan 01 2014