The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A234800 First occurrence of n in A234323: Number of nontrivial zeros of the Riemann Zeta function in the interval 1/2+i[n,n+1). 6
 1, 14, 111, 5826, 85865, 4580009, 290820868 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS k 0: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, …, A120401 1: 14, 21, 25, 30, 32, 37, 40, 43, 48, 49, 52, 56, 59, 60, 65, …, A234802 2: 111, 150, 169, 224, 231, 329, 357, 373, 415, 478, 493, 540, …, A234803 3: 5826, 5978, 6494, 7563, 8106, 8942, 9601, 9856, 9976, 10000, …, A234804 4: 85865, 193997, 245986, 276125, 283519, 297624, 298486, 311014, …, A234805 5: 4580009, 7149902, 8120618, 10002309, 10597386, 11333337, 11432756, …, A234806 6: 290820868, 317905108, 334924359, 386701579, 410462993, 430633085, …, A234807 The occurrence of <0> is probably finite since the average height of a(n) is A234323 is log(n)/(2*Pi). This is a conjecture. LINKS Simon Plouffe, a(n)from 1 to 1000000 LMFDB David Platt's table of the zeros up to 103 billion Table of the first 103 billion zeros. Wikipedia, Riemann zeta function zeros MATHEMATICA t = Table[0, {100}]; k = 1; cnt = 1; a = 0; t[[1]] = 14; While[k < 1000001, b = Floor[ Im[ N[ ZetaZero[ k]] ]]; If[b == a, cnt++; If[t[[cnt]] == 0, t[[cnt]] = b; Print[{cnt, b}]], cnt = 1]; a = b; k++] CROSSREFS Cf. A234323, A002410, A122526. Sequence in context: A215868 A244693 A039630 * A213348 A004408 A002409 Adjacent sequences:  A234797 A234798 A234799 * A234801 A234802 A234803 KEYWORD nonn,hard,more AUTHOR Simon Plouffe and Robert G. Wilson v, Dec 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 11:54 EDT 2020. Contains 336198 sequences. (Running on oeis4.)