%I #4 Dec 30 2013 17:12:50
%S 19652,1269036,83120724,5465582060,359793857812,23692759265012,
%T 1560344155530604,102763262525972764,6767981316129837140,
%U 445739932002608156372,29356499455959182741884,1933423944068169976159436
%N Number of (n+1)X(4+1) 0..3 arrays with no adjacent elements equal and with each 2X2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases
%C Column 4 of A234786
%H R. H. Hardin, <a href="/A234782/b234782.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 115*a(n-1) -4157*a(n-2) +69117*a(n-3) -595705*a(n-4) +2449306*a(n-5) -240335*a(n-6) -43350087*a(n-7) +178528425*a(n-8) -183199822*a(n-9) -751284432*a(n-10) +2871335435*a(n-11) -3549608757*a(n-12) -650892687*a(n-13) +7285361378*a(n-14) -9372087568*a(n-15) +5616780205*a(n-16) -1330498112*a(n-17) -261001088*a(n-18) +232979629*a(n-19) -45081325*a(n-20) -1230938*a(n-21) +1537784*a(n-22) -190656*a(n-23) +8208*a(n-24) -108*a(n-25)
%e Some solutions for n=1
%e ..1..3..1..3..0....1..0..3..1..3....3..0..3..0..3....1..3..1..3..1
%e ..2..1..3..0..1....3..2..0..3..0....1..3..1..2..1....0..2..3..2..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 30 2013