login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234735 Number of (n+1)X(5+1) 0..7 arrays with every 2X2 subblock having its diagonal sum differing from its antidiagonal sum by 8 (constant stress 1X1 tilings) 1
29976, 64320, 127032, 319488, 737160, 2072256, 5395128, 16400256, 46685256, 150256320, 456811512, 1535641728, 4907007240, 17070415296, 56711610168, 202785542016, 695029893576, 2541208424640, 8933061775992, 33257975319168 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 5 of A234738

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..91

FORMULA

Empirical: a(n) = 8*a(n-1) +53*a(n-2) -564*a(n-3) -888*a(n-4) +17184*a(n-5) -2382*a(n-6) -296784*a(n-7) +308859*a(n-8) +3196608*a(n-9) -5284083*a(n-10) -22169196*a(n-11) +48357478*a(n-12) +97763896*a(n-13) -273091508*a(n-14) -253071696*a(n-15) +976703832*a(n-16) +271829664*a(n-17) -2148744960*a(n-18) +304750080*a(n-19) +2640988800*a(n-20) -1133222400*a(n-21) -1378944000*a(n-22) +870912000*a(n-23)

EXAMPLE

Some solutions for n=3

..2..5..2..5..1..4....1..6..4..7..1..6....2..6..3..6..1..5....2..5..2..6..3..6

..6..1..6..1..5..0....3..0..6..1..3..0....5..1..6..1..4..0....5..0..5..1..6..1

..3..6..3..6..2..5....0..5..3..6..0..5....1..5..2..5..0..4....3..6..3..7..4..7

..6..1..6..1..5..0....4..1..7..2..4..1....5..1..6..1..4..0....6..1..6..2..7..2

CROSSREFS

Sequence in context: A235581 A224612 A233946 * A106771 A184502 A285655

Adjacent sequences:  A234732 A234733 A234734 * A234736 A234737 A234738

KEYWORD

nonn

AUTHOR

R. H. Hardin, Dec 30 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 20:24 EDT 2019. Contains 325056 sequences. (Running on oeis4.)