login
A234686
Number of (n+1) X (4+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5 (constant-stress 1 X 1 tilings).
1
27344, 69336, 174320, 531984, 1602224, 5614248, 19258400, 74809368, 282312464, 1187833176, 4822708640, 21611172984, 92875010384, 437216431128, 1962918959840, 9597345360888, 44533050266384, 224048187428376
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) +136*a(n-2) -1228*a(n-3) -7714*a(n-4) +83412*a(n-5) +227220*a(n-6) -3310020*a(n-7) -3144813*a(n-8) +85322244*a(n-9) -10139052*a(n-10) -1502272464*a(n-11) +1272592288*a(n-12) +18484107136*a(n-13) -25856757520*a(n-14) -159615082880*a(n-15) +298588477264*a(n-16) +954259846848*a(n-17) -2239825910784*a(n-18) -3795391531008*a(n-19) +11239750642176*a(n-20) +9072344881152*a(n-21) -37315540684800*a(n-22) -8727234969600*a(n-23) +78238462464000*a(n-24) -12303747072000*a(n-25) -93182607360000*a(n-26) +40370503680000*a(n-27) +47656304640000*a(n-28) -30098718720000*a(n-29).
EXAMPLE
Some solutions for n=3:
1 6 0 5 1 4 1 1 2 4 3 6 1 6 3 3 0 3 1 1
1 1 0 0 1 3 5 0 6 3 3 1 1 1 3 3 5 3 6 1
1 6 0 5 1 5 2 2 3 5 3 6 1 6 3 4 1 4 2 2
5 5 4 4 5 3 5 0 6 3 4 2 2 2 4 2 4 2 5 0
CROSSREFS
Column 4 of A234690.
Sequence in context: A237381 A109481 A328214 * A064967 A168215 A224626
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 29 2013
STATUS
approved