login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1) X (2+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5 (constant-stress 1 X 1 tilings).
1

%I #6 Jun 20 2022 18:44:34

%S 404,1152,2924,9108,25292,82956,243164,823836,2495084,8636892,

%T 26700764,93812028,294012332,1044061596,3303828764,11823983676,

%U 37682184044,135642577692,434618272604,1571271439548,5055647094572,18337480193436

%N Number of (n+1) X (2+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5 (constant-stress 1 X 1 tilings).

%H R. H. Hardin, <a href="/A234675/b234675.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) +47*a(n-2) -200*a(n-3) -901*a(n-4) +4204*a(n-5) +8957*a(n-6) -48440*a(n-7) -47194*a(n-8) +334096*a(n-9) +101948*a(n-10) -1410080*a(n-11) +170136*a(n-12) +3549696*a(n-13) -1446912*a(n-14) -4861440*a(n-15) +2954880*a(n-16) +2764800*a(n-17) -2073600*a(n-18).

%e Some solutions for n=5:

%e 4 2 3 3 2 2 5 0 5 3 2 3 1 3 1 1 0 1 5 2 5

%e 2 5 1 1 5 0 1 1 1 1 5 1 4 1 4 0 4 0 3 5 3

%e 2 0 1 2 1 1 5 0 5 3 2 3 3 5 3 2 1 2 3 0 3

%e 2 5 1 1 5 0 2 2 2 0 4 0 3 0 3 0 4 0 1 3 1

%e 5 3 4 2 1 1 5 0 5 2 1 2 1 3 1 1 0 1 3 0 3

%e 2 5 1 1 5 0 5 5 5 0 4 0 3 0 3 1 5 1 2 4 2

%Y Column 2 of A234681.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 29 2013