login
A234653
Number of (n+1) X (3+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4 (constant-stress 1 X 1 tilings).
1
3264, 9616, 28496, 94432, 315024, 1148176, 4196144, 16491760, 64635984, 269420656, 1113440816, 4854540592, 20870725584, 94119170416, 416524927664, 1926045742000, 8704759565904, 41004476986096, 188158197010736
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) +83*a(n-2) -804*a(n-3) -2479*a(n-4) +34112*a(n-5) +22457*a(n-6) -798036*a(n-7) +453896*a(n-8) +11262032*a(n-9) -15161188*a(n-10) -98135856*a(n-11) +191644944*a(n-12) +513355968*a(n-13) -1327868352*a(n-14) -1430555904*a(n-15) +5245827840*a(n-16) +1148359680*a(n-17) -11006668800*a(n-18) +3284582400*a(n-19) +9455616000*a(n-20) -5971968000*a(n-21).
EXAMPLE
Some solutions for n=4:
5 2 3 2 4 4 4 4 2 5 0 5 1 3 0 4 0 4 4 4
3 4 1 4 0 4 0 4 4 3 2 3 3 1 2 2 4 4 0 4
3 0 1 0 1 1 1 1 2 5 0 5 2 4 1 5 5 1 1 1
2 3 0 3 0 4 0 4 2 1 0 1 4 2 3 3 4 4 0 4
3 0 1 0 4 4 4 4 5 0 3 0 1 3 0 4 0 4 4 4
CROSSREFS
Column 3 of A234658.
Sequence in context: A137836 A251919 A338071 * A254492 A254485 A253857
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 29 2013
STATUS
approved