

A234642


Smallest x such that x mod phi(x) = n, or 0 if no such x exists.


1



1, 3, 10, 9, 20, 25, 30, 15, 40, 21, 50, 35, 60, 33, 98, 39, 80, 65, 90, 51, 100, 45, 70, 95, 120, 69, 338, 63, 196, 161, 110, 87, 160, 93, 130, 75, 180, 217, 182, 99, 200, 185, 170, 123, 140, 117, 190, 215, 240, 141, 250, 235, 676, 329, 230, 159, 392, 153, 322
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Conjecture: a(n) > 0 for all n. This would follow from a form of Goldbach's (binary) conjecture. Checked up to 10^7; largest term in that range is a(9972987) = 4178506411.
Pomerance proves that x = n (mod phi(x)) has at least two solutions for each n, but this allows x < n and so does not prove the conjecture above.
a(n) > 0 for all n <= 10^9. The largest term in that range is a(990429171) = 1050844225771.  Donovan Johnson, Feb 18 2014


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
Carl Pomerance, On the congruences σ(n) ≡ a (mod n) and n ≡ a (mod φ(n)), Acta Arithmetica 26:3 (19741975), pp. 265272.


MATHEMATICA

A234642[n_]:=NestWhile[# + 1 &, 1, Not[Mod[#, EulerPhi[#]] == n] &] (* JungHwan Min, Dec 23 2015 *)
A234642[n_]:=Catch[Do[If[Mod[k, EulerPhi[k]] == n, Throw[k]], {k, Infinity}]] (* JungHwan Min, Dec 23 2015 *)
xmp[n_]:=Module[{x=1}, While[Mod[x, EulerPhi[x]]!=n, x++]; x]; Array[xmp, 60, 0] (* Harvey P. Dale, Jan 04 2016 *)


PROG

(PARI) a(n)=my(k=n); while(k++%eulerphi(k)!=n, ); k


CROSSREFS

Cf. A068494, A076495.
Sequence in context: A280461 A222345 A202339 * A038228 A213214 A009030
Adjacent sequences: A234639 A234640 A234641 * A234643 A234644 A234645


KEYWORD

nonn,nice


AUTHOR

Charles R Greathouse IV, Dec 28 2013


STATUS

approved



