login
A234597
Number of Weyl group elements, not containing an s_1 factor, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type D and rank n.
2
5, 11, 21, 48, 107, 229, 501, 1099, 2394, 5225, 11417, 24923, 54409, 118808, 259403, 566361, 1236597, 2699975, 5895058, 12871185, 28102765, 61359099, 133970477, 292509056, 638659595, 1394439181, 3044596421, 6647523443, 14514097002, 31689848889, 69191112641
OFFSET
4,1
LINKS
P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.
P. E. Harris, E. Insko, and L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055, 2013
B. Kostant, A Formula for the Multiplicity of a Weight, Proc. Natl. Acad. Sci. USA, 44 (No. 6, June 1958), 588-589.
FORMULA
a(n) = A234576(n) + A234576(n-1).
a(n) = a(n-1)+a(n-2)+3*a(n-3)+a(n-4). G.f.: -x^4*(x^3+5*x^2+6*x+5) / (x^4+3*x^3+x^2+x-1). - Colin Barker, Dec 30 2013
EXAMPLE
For n=6, a(6) = A234576(6) + A234576(5)= 14+7 = 21.
MAPLE
r:=proc(n::nonnegint)
if n<=3 then return 0:
elif n=4 then return 4:
elif n=5 then return 7:
elif n=6 then return 14:
elif n=7 then return 34:
else return
r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
end if;
end proc:
a:=proc(n::nonnegint)
if n<=3 then return 0:
elif n=4 then return 5:
elif n=5 then return 11:
else return
r(n)+r(n-1):
end if;
end proc:
MATHEMATICA
LinearRecurrence[{1, 1, 3, 1}, {5, 11, 21, 48}, 40] (* Harvey P. Dale, Feb 17 2016 *)
PROG
(PARI) Vec(-x^4*(x^3+5*x^2+6*x+5)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 30 2013
CROSSREFS
Cf. A234576.
Sequence in context: A131898 A168642 A357750 * A261982 A296033 A296968
KEYWORD
nonn,easy
AUTHOR
Erik Insko, Dec 28 2013
STATUS
approved