login
A234572
Primes of the form P(p-1), where p is a prime and P(.) is the partition function (A000041).
6
2, 5, 11, 17977, 790738119649411319, 2058791472042884901563, 27833079238879849385687, 8121368081058512888507057, 675004412390512738195023734124239, 1398703012615213588677365804960180341, 16193798232344933888778097136641377589301, 204931453786129197483756438132982529754356479553, 3019564607799532159016586951616642980389816614848623, 22757918197082858017617136646280039394687006502870793231847, 1078734573992480956821414895441907729656949308800686938161281
OFFSET
1,1
COMMENTS
Though the primes in this sequence are very rare, by the conjecture in A234567 there should be infinitely many such primes.
See A234569 for a list of known primes p with P(p-1) also prime.
LINKS
FORMULA
a(n) = A000041(A234569(n)-1).
EXAMPLE
a(1) = 2 since 2 = P(3-1) with 2 and 3 both prime.
a(2) = 5 since 5 = P(5-1) with 5 prime.
a(3) = 11 since 11 = P(7-1) with 7 and 11 both prime.
MATHEMATICA
p[n_]:= A234569(n)
Table[PartitionsP[p[n]-1], {n, 1, 15}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 28 2013
STATUS
approved