%I #19 Sep 08 2022 08:46:06
%S 1,5,60,935,16555,316251,6353760,132321990,2830853610,61841702065,
%T 1373736123760,30935736733230,704631080073635,16204866668942000,
%U 375762274309378440,8775795659568727020,206241872189050376550,4873761343609509542490
%N Binomial(10*n+5,n)/(2*n+1).
%C Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=5.
%H Vincenzo Librandi, <a href="/A234528/b234528.txt">Table of n, a(n) for n = 0..200</a>
%H J-C. Aval, <a href="http://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
%H Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a>
%H Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955.
%F G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=5.
%t Table[Binomial[10 n + 5, n]/(2 n + 1), {n, 0, 30}] (* _Vincenzo Librandi_, Dec 28 2013 *)
%o (PARI) a(n) = binomial(10*n+5,n)/(2*n+1);
%o (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^2)^5+x*O(x^n)); polcoeff(B, n)}
%o (Magma) [Binomial(10*n+5, n)/(2*n+1): n in [0..30]]; // _Vincenzo Librandi_, Dec 28 2013
%Y Cf. A000108, A059968, A234525, A234526, A234527, A234529, A234570, A234571, A234573, A229963.
%K nonn
%O 0,2
%A _Tim Fulford_, Dec 27 2013