

A234514


Number of ways to write n = k + m with k > 0 and m > 0 such that p = k + phi(m)/2 and q(p) + 1 are both prime, where phi(.) is Euler's totient function, and q(.) is the strict partition function (A000009).


16



0, 0, 0, 1, 2, 2, 1, 1, 1, 0, 1, 0, 2, 2, 2, 3, 4, 2, 4, 2, 3, 3, 3, 2, 2, 3, 1, 4, 2, 1, 4, 2, 4, 2, 5, 3, 4, 1, 5, 6, 4, 2, 5, 5, 5, 3, 5, 4, 6, 3, 5, 7, 10, 2, 4, 5, 6, 5, 5, 2, 3, 5, 6, 6, 4, 2, 5, 3, 7, 4, 5, 3, 8, 7, 2, 5, 9, 3, 3, 2, 9, 9, 6, 6, 7, 6, 9, 4, 7, 4, 10, 8, 6, 11, 11, 4, 6, 4, 9, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Conjecture: (i) a(n) > 0 for all n > 12.
(ii) For any integer n > 4, there is a prime p < n  2 such that q(p + phi(np)/2) + 1 is prime.
Clearly, part (i) of the conjecture implies that there are infinitely many primes p with q(p) + 1 prime (cf. A234530).
We have verified part (i) for n up to 10^5.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000


EXAMPLE

a(11) = 1 since 11 = 1 + 10 with 1 + phi(10)/2 = 3 and q(3) + 1 = 3 both prime.
a(27) = 1 since 27 = 7 + 20 with 7 + phi(20)/2 = 11 and q(11) + 1 = 13 both prime.
a(30) = 1 since 30 = 8 + 22 with 8 + phi(22)/2 = 13 and q(13) + 1 = 19 both prime.
a(38) = 1 since 38 = 21 + 17 with 21 + phi(17)/2 = 29 and q(29) + 1 = 257 both prime.
a(572) = 1 since 572 = 77 + 495 with 77 + phi(495)/2 = 197 and q(197) + 1 = 406072423 both prime.
a(860) = 1 since 860 = 523 + 337 with 523 + phi(337)/2 = 691 and q(691) + 1 = 712827068077888961 both prime.


MATHEMATICA

f[n_, k_]:=k+EulerPhi[nk]/2
q[n_, k_]:=PrimeQ[f[n, k]]&&PrimeQ[PartitionsQ[f[n, k]]+1]
a[n_]:=Sum[If[q[n, k], 1, 0], {k, 1, n1}]
Table[a[n], {n, 1, 100}]


CROSSREFS

Cf. A000009, A000010, A000040, A229835, A233307, A233390, A233417, A234451, A234470, A234475, A234503, A234504, A234530
Sequence in context: A004578 A319372 A319367 * A051031 A181059 A111915
Adjacent sequences: A234511 A234512 A234513 * A234515 A234516 A234517


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Dec 27 2013


STATUS

approved



