login
A234510
a(n) = 7*binomial(9*n+7,n)/(9*n+7).
13
1, 7, 84, 1232, 20090, 349860, 6371764, 119877472, 2311664355, 45448324110, 907580289616, 18358110017520, 375353605696524, 7744997102466932, 161070300819384000, 3372697621463787456, 71046594621639707245, 1504569659175026591805
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p = 9, r = 7.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 9, r = 7.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^7), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/7) is the o.g.f. for A062994. - Peter Bala, Oct 14 2015
MATHEMATICA
Table[7 Binomial[9 n + 7, n]/(9 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 27 2013 *)
PROG
(PARI) a(n) = 7*binomial(9*n+7, n)/(9*n+7);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/7))^7+x*O(x^n)); polcoeff(B, n)}
(Magma) [7*Binomial(9*n+7, n)/(9*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
KEYWORD
nonn,easy
AUTHOR
Tim Fulford, Dec 27 2013
STATUS
approved