login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234492 Number of (n+1)X(2+1) 0..5 arrays with every 2X2 subblock having its diagonal sum differing from its antidiagonal sum by 2 (constant stress 1X1 tilings) 1
1834, 17022, 158288, 1483566, 13868952, 130537496, 1224977498, 11577801970, 109063132114, 1035175545192, 9789065497830, 93311908294380, 885819798218548, 8480241264665590, 80814542061692066, 776980355789433902 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 2 of A234497

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 27*a(n-1) -7*a(n-2) -5642*a(n-3) +38876*a(n-4) +328643*a(n-5) -3991917*a(n-6) -1314423*a(n-7) +134764409*a(n-8) -274870060*a(n-9) -1754310602*a(n-10) +6188057089*a(n-11) +6383741530*a(n-12) -45869779722*a(n-13) +19646271368*a(n-14) +128555834088*a(n-15) -144208395792*a(n-16) -115200081792*a(n-17) +233207698368*a(n-18) -26459811072*a(n-19) -102846620160*a(n-20) +35034937344*a(n-21) +13514784768*a(n-22) -5918883840*a(n-23)

EXAMPLE

Some solutions for n=3

..0..3..4....1..2..1....0..4..3....0..2..3....1..2..3....1..2..1....1..4..1

..0..1..4....1..0..1....0..2..3....5..5..4....3..2..5....3..2..3....1..2..1

..1..0..5....3..4..3....0..4..3....2..4..5....1..2..3....5..2..1....2..1..2

..5..2..5....4..3..4....1..3..0....2..2..5....2..1..4....2..1..2....4..1..4

CROSSREFS

Sequence in context: A186899 A185484 A133539 * A100970 A159202 A238294

Adjacent sequences:  A234489 A234490 A234491 * A234493 A234494 A234495

KEYWORD

nonn

AUTHOR

R. H. Hardin, Dec 26 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 13:37 EDT 2019. Contains 327253 sequences. (Running on oeis4.)