|
|
A234450
|
|
T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock having its diagonal sum differing from its antidiagonal sum by 1 (constant stress 1X1 tilings)
|
|
7
|
|
|
160, 1120, 1120, 8064, 11574, 8064, 58720, 125080, 125080, 58720, 428800, 1377422, 2053280, 1377422, 428800, 3137920, 15269704, 34601928, 34601928, 15269704, 3137920, 22953984, 170001402, 588663528, 898985624, 588663528, 170001402
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
........160.........1120...........8064.............58720..............428800
.......1120........11574.........125080...........1377422............15269704
.......8064.......125080........2053280..........34601928...........588663528
......58720......1377422.......34601928.........898985624.........23647980136
.....428800.....15269704......588663528.......23647980136........963859893408
....3137920....170001402....10079824144......627437990794......39720806964788
...22953984...1894235272...172781443608....16674841633492....1639385463803776
..168075520..21145362278..2969800840496...444755926154674...67993371547921628
.1229731840.235980939816.51008286679168.11853880524355808.2815853396337809696
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..97
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = 60*a(n-2) -344*a(n-4)
k=2: [order 17]
k=3: [order 92]
|
|
EXAMPLE
|
Some solutions for n=2 k=4
..0..1..2..4..4....0..1..2..2..1....0..3..1..0..0....0..1..0..3..1
..0..0..0..3..2....0..0..2..3..3....1..3..2..0..1....0..2..0..4..3
..0..1..0..2..0....1..0..1..1..2....0..1..1..0..0....1..4..1..4..4
|
|
CROSSREFS
|
Sequence in context: A234898 A234891 A305272 * A234444 A166778 A236518
Adjacent sequences: A234447 A234448 A234449 * A234451 A234452 A234453
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Dec 26 2013
|
|
STATUS
|
approved
|
|
|
|