login
A234432
Primes which are the arithmetic mean of the squares of six consecutive primes.
1
9413, 25673, 38237, 43573, 81553, 106453, 136273, 145513, 257857, 294013, 325753, 430433, 497257, 599273, 702413, 907733, 948173, 1238893, 2053553, 2185577, 2883457, 3972113, 4226077, 4375177, 4494577, 4728313, 6106141
OFFSET
1,1
LINKS
EXAMPLE
9413 is in the sequence because (83^2 + 89^2 + 97^2 + 101^2 + 103^2 + 107^2)/6 = 9413 which is prime.
25673 is in the sequence because (149^2 + 151^2 + 157^2 + 163^2 + 167^2 + 173^2)/6 = 25673 which is prime.
MAPLE
KD := proc() local a, b, d, e, f, g, h; a:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); e:=ithprime(n+3); f:=ithprime(n+4); h:=ithprime(n+5); g:=(a^2+b^2+d^2+e^2+f^2+h^2)/6; if g=floor(g) and isprime(g) then RETURN (g); fi; end: seq(KD(), n=2..1000);
CROSSREFS
Cf. A084951: primes of the form (prime(k)^2 + prime(k+1)^2 + prime(k+2)^2)/3.
Cf. A093343: primes of the form (prime(k)^2 + prime(k+1)^2)/2.
Sequence in context: A031595 A031775 A143367 * A235677 A235447 A068220
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Dec 26 2013
STATUS
approved