login
A234254
Number of conjugacy classes in Weyl group of type D_n.
1
4, 5, 13, 18, 37, 55, 100, 150, 251, 376, 599, 885, 1355, 1978, 2944, 4235, 6160, 8745, 12484, 17501, 24589, 34075, 47233, 64756, 88695, 120420, 163210, 219595, 294828, 393407, 523699, 693465, 915978, 1204329, 1579472, 2063035, 2687930, 3489365, 4518710
OFFSET
2,1
REFERENCES
Roger W. Carter, Finite Groups of Lie Type: Conjugacy Classes And Complex Characters. Wiley, 1985. [see p. 376, Proposition 11.4.4]
LINKS
FORMULA
a(n) = A000712(n)/2 if n is odd; a(n) = (A000712(n) + 3*A000041(n/2))/2 if n is even.
PROG
(Sage) def A234254(n) : return (PartitionTuples(2, n).cardinality() + is_even(n)*3*Partitions(n//2).cardinality())//2
CROSSREFS
Sequence in context: A083709 A091183 A372122 * A258281 A094029 A005672
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Dec 22 2013
STATUS
approved