%I
%S 96,476,476,2352,2900,2352,12152,18048,18048,12152,63136,122532,
%T 139512,122532,63136,335536,849760,1219868,1219868,849760,335536,
%U 1789760,6162980,10952176,14098264,10952176,6162980,1789760,9652704,45072784
%N T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 10 (10 maximizes T(1,1))
%C Table starts
%C ......96.......476........2352........12152..........63136..........335536
%C .....476......2900.......18048.......122532.........849760.........6162980
%C ....2352.....18048......139512......1219868.......10952176.......105917092
%C ...12152....122532.....1219868.....14098264......167360104......2200773076
%C ...63136....849760....10952176....167360104.....2595084608.....45902295216
%C ..335536...6162980...105917092...2200773076....45902295216...1118287561704
%C .1789760..45072784..1033754752..29189609288...812052658856..27031988237608
%C .9652704.336800596.10502679784.411909391600.15766466760808.737597105103228
%H R. H. Hardin, <a href="/A234083/b234083.txt">Table of n, a(n) for n = 1..127</a>
%F Empirical for column k:
%F k=1: a(n) = 4*a(n1) +22*a(n2) 56*a(n3) 120*a(n4) +32*a(n5) +64*a(n6)
%F k=2: [order 26]
%F k=3: [order 97]
%e Some solutions for n=3 k=4
%e ..0..0..1..2..0....0..0..0..2..3....0..3..0..3..0....0..0..2..4..4
%e ..1..3..0..3..1....1..3..1..3..0....0..1..0..1..0....1..3..1..3..1
%e ..4..2..1..2..0....0..0..0..2..3....2..3..0..3..2....0..2..4..2..0
%e ..1..1..4..1..3....3..1..3..1..0....4..1..0..1..4....1..3..1..3..3
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 19 2013
