login
A233989
T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 10 (10 maximizes T(1,1)), and no two adjacent values equal
9
56, 236, 236, 976, 1540, 976, 4064, 9632, 9632, 4064, 16880, 62040, 92320, 62040, 16880, 70176, 393396, 914000, 914000, 393396, 70176, 291648, 2520604, 8950496, 14319916, 8950496, 2520604, 291648, 1212224, 16042420, 88388464, 218943540
OFFSET
1,1
COMMENTS
Table starts
......56.......236........976.........4064..........16880............70176
.....236......1540.......9632........62040.........393396..........2520604
.....976......9632......92320.......914000........8950496.........88388464
....4064.....62040.....914000.....14319916......218943540.......3423714364
...16880....393396....8950496....218943540.....5240298896.....128552152496
...70176...2520604...88388464...3423714364...128552152496....5022726159372
..291648..16042420..869143232..52813238148..3112596618224..191944315497416
.1212224.102569896.8570819600.823369058112.76199608327632.7487035849093952
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +8*a(n-2) +4*a(n-3)
k=2: [order 13]
k=3: [order 25]
k=4: [order 78]
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1..0....0..1..3..4..2....0..2..3..1..3....0..1..0..2..4
..1..3..1..3..1....2..0..1..3..1....1..0..2..0..2....1..3..2..3..2
..2..4..3..2..0....3..1..3..2..3....3..2..3..2..3....2..1..3..1..3
..1..3..1..0..1....2..0..1..0..1....1..0..1..0..2....4..3..4..3..4
CROSSREFS
Sequence in context: A376669 A193428 A179757 * A233982 A234769 A234762
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 18 2013
STATUS
approved