%I #4 Dec 18 2013 06:55:30
%S 1776,20616,238800,2805732,32938264,387379488,4554084512,53556471248,
%T 629746787804,7405534639216,87082117502584,1024028786411432,
%U 12041751120851748,141602350814970496,1665134904378835048
%N Number of (n+1)X(3+1) 0..5 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 10, and no two adjacent values equal
%C Column 3 of A233958
%H R. H. Hardin, <a href="/A233953/b233953.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 10*a(n-1) +206*a(n-2) -1974*a(n-3) -17658*a(n-4) +172006*a(n-5) +823218*a(n-6) -8755950*a(n-7) -22447964*a(n-8) +290331225*a(n-9) +335340549*a(n-10) -6620509403*a(n-11) -1129180909*a(n-12) +106892209217*a(n-13) -61125364955*a(n-14) -1239668100020*a(n-15) +1464086615509*a(n-16) +10358200949139*a(n-17) -18063939217024*a(n-18) -61734170536425*a(n-19) +146014464495890*a(n-20) +253673952282616*a(n-21) -825629122879556*a(n-22) -647362175538384*a(n-23) +3342376565187184*a(n-24) +566558281284436*a(n-25) -9724628758424336*a(n-26) +2629158173196324*a(n-27) +20109448606399920*a(n-28) -12570237040208256*a(n-29) -28672753664086816*a(n-30) +27753562260435776*a(n-31) +26303535277229760*a(n-32) -37392616983493824*a(n-33) -12637279427092736*a(n-34) +31789181667627520*a(n-35) -448199782440960*a(n-36) -16359189473893376*a(n-37) +4114097577508864*a(n-38) +4462518392578048*a(n-39) -2023269312528384*a(n-40) -396341235515392*a(n-41) +337927810580480*a(n-42) -37006957084672*a(n-43) -5076173193216*a(n-44) +713606299648*a(n-45)
%e Some solutions for n=2
%e ..5..3..5..3....1..0..2..0....2..4..3..1....1..3..2..1....4..5..4..3
%e ..3..2..3..4....3..2..3..1....1..2..1..0....0..2..0..2....2..3..2..1
%e ..5..4..5..3....1..0..2..3....3..4..3..1....2..3..1..3....4..2..0..2
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 18 2013