%I #4 Dec 17 2013 12:31:18
%S 144,656,656,2688,2944,2688,12288,12152,12152,12288,51200,62064,47232,
%T 62064,51200,233984,278416,267792,267792,278416,233984,987136,1521520,
%U 1194976,1795420,1194976,1521520,987136,4503552,7123728,8198512,9063944
%N T(n,k)=Number of (n+1)X(k+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 35 (35 maximizes T(1,1))
%C Table starts
%C ......144........656........2688........12288........51200.......233984
%C ......656.......2944.......12152........62064.......278416......1521520
%C .....2688......12152.......47232.......267792......1194976......8198512
%C ....12288......62064......267792......1795420......9063944.....78303216
%C ....51200.....278416.....1194976......9063944.....45063232....522622840
%C ...233984....1521520.....8198512.....78303216....522622840...7039959748
%C ...987136....7123728....39075520....418952968...2708218400..48247033760
%C ..4503552...40312912...304813760...4481613904..47900472896.957603465060
%C .19185664..192972032..1473291680..23800307888.237397419968
%C .87351296.1110694824.12478506368.300386468800
%H R. H. Hardin, <a href="/A233903/b233903.txt">Table of n, a(n) for n = 1..97</a>
%F Empirical for column k:
%F k=1: a(n) = 44*a(n-2) -608*a(n-4) +2560*a(n-6)
%F k=2: [order 26]
%F k=3: [order 69]
%e Some solutions for n=3 k=4
%e ..3..6..2..6..5....4..3..0..2..5....3..4..2..1..3....3..5..2..4..2
%e ..2..4..5..4..2....0..2..4..3..1....2..6..3..5..4....1..4..6..5..6
%e ..6..3..1..3..0....4..3..0..2..5....5..4..2..1..3....5..3..2..4..2
%e ..2..4..5..4..2....0..2..4..3..1....2..6..3..5..2....1..4..0..1..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 17 2013