login
A233883
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11 (11 maximizes T(1,1))
8
24, 76, 76, 240, 300, 240, 760, 1224, 1224, 760, 2400, 5156, 6200, 5156, 2400, 7600, 22020, 33656, 33656, 22020, 7600, 24000, 95464, 178704, 251532, 178704, 95464, 24000, 76000, 415092, 1015656, 1768660, 1768660, 1015656, 415092, 76000, 240000
OFFSET
1,1
COMMENTS
Table starts
.....24.......76........240.........760..........2400...........7600
.....76......300.......1224........5156.........22020..........95464
....240.....1224.......6200.......33656........178704........1015656
....760.....5156......33656......251532.......1768660.......14111768
...2400....22020.....178704.....1768660......15013864......160334028
...7600....95464....1015656....14111768.....160334028.....2431002508
..24000...415092....5566176...103547288....1417225464....28822097624
..76000..1819604...32573400...858513368...16134545712...467398305988
.240000..7964808..181919416..6440961128..147047775280..5678281493816
.760000.35055940.1082482200.54554580804.1750029730452.96535463946148
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 10*a(n-2)
k=2: a(n) = 3*a(n-1) +19*a(n-2) -60*a(n-3) +8*a(n-4) +36*a(n-5) -12*a(n-6)
k=3: a(n) = 56*a(n-2) -819*a(n-4) +2791*a(n-6) -3096*a(n-8) +961*a(n-10) -84*a(n-12)
k=4: [order 29]
k=5: [order 52]
EXAMPLE
Some solutions for n=3 k=4
..0..1..2..1..0....1..2..1..2..1....0..2..2..0..0....1..0..1..2..1
..2..0..0..2..0....2..0..0..2..0....1..0..1..2..1....2..2..0..0..2
..0..1..2..1..2....0..1..2..1..2....2..2..0..2..0....1..0..1..2..1
..2..0..0..0..2....0..2..0..2..0....0..1..0..1..0....2..0..2..0..0
CROSSREFS
Sequence in context: A185940 A265424 A033572 * A291630 A195027 A325958
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 17 2013
STATUS
approved