

A233735


G.f.: x^3*(x^21  x^20  x^11 + x^10 + x^9  x^8 + x^6  x^5 + x^3 + x^2  x + 1) / ((1x^5) * (1x)^2).


2



0, 0, 0, 1, 1, 2, 4, 6, 8, 10, 13, 16, 20, 25, 29, 34, 39, 45, 52, 58, 65, 72, 80, 88, 96, 105, 114, 124, 134, 144, 155, 166, 178, 190, 202, 215, 228, 242, 256, 270, 285, 300, 316, 332, 348, 365, 382, 400, 418, 436, 455, 474, 494, 514, 534
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

The second differences repeat with period 1,0,1,0,0 for n >= 20.
a(n) is a lower bound on A085577(n2). The Ngaokrajang link shows arrangements of a(n) Greek crosses in an n X n grid. Note that a(11)=16, whereas A085577(9)=17, so the bound is not always tight.  N. J. A. Sloane, Apr 19 2015


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Kival Ngaokrajang, Packings of a(n) Greek crosses. [Note that it is possible to pack 17 Greek crosses into an 11 X 11 grid (see A085577), so these arrangements are not always optimal.  N. J. A. Sloane, Apr 19 2015]
Index entries for linear recurrences with constant coefficients, signature (2,1,0,0,1,2,1)


MATHEMATICA

CoefficientList[Series[x^3*(x^21  x^20  x^11 + x^10 + x^9  x^8 + x^6  x^5 + x^3 +x^2  x + 1)/((1  x^5)*(1  x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jan 08 2018 *)


PROG

(PARI) x='x+O('x^50); Vec(x^3*(x^21  x^20  x^11 + x^10 + x^9  x^8 + x^6  x^5 + x^3 +x^2  x + 1)/((1  x^5)*(1  x)^2)) \\ G. C. Greubel, Jan 08 2018


CROSSREFS

Cf. A085576, A085577, A233035, A233036.
Sequence in context: A269746 A056827 A024172 * A085577 A121832 A253241
Adjacent sequences: A233732 A233733 A233734 * A233736 A233737 A233738


KEYWORD

nonn,easy


AUTHOR

Kival Ngaokrajang, Dec 15 2013


EXTENSIONS

Entry revised by N. J. A. Sloane, Apr 19 2015. The new definition is a g.f. found by Ralf Stephan on Dec 17 2013. The old definition was wrong.


STATUS

approved



