Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Mar 12 2021 22:24:47
%S 1,1,2,3,4,6,8,11,14,18,24,30,38,48,60,75,92,114,140,170,208,252,304,
%T 366,439,526,626,744,884,1044,1232,1451,1704,1998,2336,2730,3182,3700,
%U 4300,4986,5772,6672,7700,8876,10212,11736,13472,15438,17673,20207,23076
%N Expansion of q * psi(-q) * chi(-q^6) * psi(-q^9) / (phi(-q) * phi(-q^18)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A233693/b233693.txt">Table of n, a(n) for n = 1..1000</a>
%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of eta(q^4) * eta(q^6) * eta(q^9) * eta(q^36)^2 / (eta(q) * eta(q^12) * eta(q^18)^3) in powers of q.
%F Euler transform of period 36 sequence [ 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, ...].
%F a(2*n) = A123629(n).
%F a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - _Vaclav Kotesovec_, Oct 13 2015
%e G.f. = q + q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 6*q^6 + 8*q^7 + 11*q^8 + 14*q^9 + ...
%t nmax=60; CoefficientList[Series[Product[(1-x^(4*k)) * (1-x^(6*k)) * (1-x^(9*k)) * (1+x^(18*k))^2 / ((1-x^k) * (1-x^(12*k)) * (1-x^(18*k))),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Oct 13 2015 *)
%t QP := QPochhammer; A233693[n_]:= SeriesCoefficient[QP[q^4]*QP[q^6] *QP[q^9]*QP[q^36]^2/(QP[q]* QP[q^12]*QP[q^18]^3), {q, 0, n}]; Table[A233693[n], {n, 0, 50}] (* _G. C. Greubel_, Dec 25 2017 *)
%o (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^6 + A) * eta(x^9 + A) * eta(x^36 + A)^2 / (eta(x + A) * eta(x^12 + A) * eta(x^18 + A)^3), n))}
%Y Cf. A123629.
%K nonn
%O 1,3
%A _Michael Somos_, Dec 14 2013