login
T(n,k)=Number of (n+1)X(k+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 26 (26 maximizes T(1,1))
7

%I #4 Dec 14 2013 12:43:10

%S 208,1220,1220,6656,8324,6656,37544,56212,56212,37544,208304,411848,

%T 501200,411848,208304,1166748,3007000,5005852,5005852,3007000,1166748,

%U 6498312,22597004,50997688,71366708,50997688,22597004,6498312,36324956

%N T(n,k)=Number of (n+1)X(k+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 26 (26 maximizes T(1,1))

%C Table starts

%C ........208........1220..........6656..........37544..........208304

%C .......1220........8324.........56212.........411848.........3007000

%C .......6656.......56212........501200........5005852........50997688

%C ......37544......411848.......5005852.......71366708......1053739156

%C .....208304.....3007000......50997688.....1053739156.....23188813328

%C ....1166748....22597004.....538751292....16463908576....545807710584

%C ....6498312...168812492....5717710176...259162493248..13115038989616

%C ...36324956..1277805668...61553770120..4182001054596.323684938848400

%C ..202569936..9619090052..662422496208.67387441794520

%C .1131482016.72923111912.7175663136164

%H R. H. Hardin, <a href="/A233665/b233665.txt">Table of n, a(n) for n = 1..84</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 13]

%F k=2: [order 74]

%e Some solutions for n=2 k=4

%e ..0..1..4..1..0....1..1..1..1..3....3..4..3..6..5....5..2..2..2..6

%e ..4..1..0..1..4....0..4..0..4..1....3..0..3..2..2....3..5..6..5..6

%e ..0..1..4..1..0....1..4..3..4..5....4..4..3..6..5....0..2..2..2..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 14 2013