login
A233644
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 2 (2 maximizes T(1,1))
9
24, 90, 90, 324, 534, 324, 1188, 3004, 3004, 1188, 4320, 17424, 26192, 17424, 4320, 15768, 99380, 238570, 238570, 99380, 15768, 57456, 572192, 2118568, 3455622, 2118568, 572192, 57456, 209520, 3277236, 19123682, 48384788, 48384788, 19123682
OFFSET
1,1
COMMENTS
Table starts
......24........90..........324...........1188.............4320
......90.......534.........3004..........17424............99380
.....324......3004........26192.........238570..........2118568
....1188.....17424.......238570........3455622.........48384788
....4320.....99380......2118568.......48384788.......1060656512
...15768....572192.....19123682......694104494......24003655980
...57456...3277236....170872144.....9797170648.....531400908604
..209520..18825580...1536664586...139850230232...11957878063196
..763776.107963840..13763062452..1981047775126..265950544067684
.2784672.619734876.123586823454.28211321138046.5965795563741028
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +6*a(n-2)
k=2: a(n) = 6*a(n-1) +9*a(n-2) -67*a(n-3) +26*a(n-4) +81*a(n-5) -48*a(n-6) +2*a(n-7)
k=3: [order 13]
k=4: [order 31]
k=5: [order 66]
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..1..1....2..1..2..2..2....1..0..1..0..0....1..1..1..1..1
..0..1..1..1..0....1..1..1..1..1....1..0..1..0..1....0..0..1..2..1
..1..1..0..1..0....0..0..0..0..0....0..0..1..1..1....1..1..1..1..1
..0..1..0..1..0....0..1..1..0..1....1..0..0..1..2....1..2..2..2..1
CROSSREFS
Sequence in context: A044592 A211632 A305888 * A010012 A256718 A233637
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 14 2013
STATUS
approved