login
Decimal expansion of the continued fraction c(1) +c(1)/(c(2) +c(2)/(c(3) +c(3)/(c(4) +c(4)/....))), where c(i)=i^2.
10

%I #29 Oct 28 2024 08:42:25

%S 1,2,2,6,2,8,4,0,2,4,1,8,2,6,9,0,2,7,4,8,1,4,9,3,7,1,0,0,8,6,2,2,4,0,

%T 3,9,6,1,9,0,8,1,1,4,8,7,3,5,3,6,2,3,5,9,5,5,0,1,6,6,6,5,2,2,1,2,5,2,

%U 7,5,4,3

%N Decimal expansion of the continued fraction c(1) +c(1)/(c(2) +c(2)/(c(3) +c(3)/(c(4) +c(4)/....))), where c(i)=i^2.

%C For more details on this type of continued fractions, see A233588.

%C This one corresponds to the squares of natural numbers.

%H Stanislav Sykora, <a href="/A233591/b233591.txt">Table of n, a(n) for n = 1..20000</a> [a(322) onward corrected by _Kevin Ryde_, Oct 28 2024]

%H Stanislav Sykora, <a href="http://dx.doi.org/10.3247/sl4math13.001">Blazys' Expansions and Continued Fractions</a>, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001

%H Stanislav Sykora, <a href="http://oeis.org/wiki/File:BlazysExpansions.txt">PARI/GP scripts for Blazys expansions and fractions</a>, OEIS Wiki

%F Equals 1+1/(4+4/(9+9/(16+16/(25+25/(36+...))))).

%e 1.22628402418269027481493710086224039619081148735362359550166652...

%t RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ Range[45]^2], 10, 111][[1]] (* _Robert G. Wilson v_, May 22 2014 *)

%o (PARI) See the link

%Y Cf. A000290 (n^2).

%Y Cf. Blazys' continued fractions: A233588, A233589, A233591 and Blazys' expansions: A233582, A233583, A233584, A233585, A233586, A233587.

%K cons,nonn,changed

%O 1,2

%A _Stanislav Sykora_, Jan 06 2014