login
A233574
a(n) is the smallest term of either A233010 or A233572 such that |n-a(n)|<a(n) is a term of one of the two sequences.
1
0, 1, 2, 2, 4, 3, 4, 6, 8, 6, 6, 8, 8, 7, 12, 8, 10, 9, 10, 13, 12, 13, 16, 20, 16, 18, 26, 18, 18, 20, 18, 18, 20, 20, 18, 26, 20, 24, 26, 21, 24, 21, 26, 43, 32, 24, 28, 26, 28, 43, 30, 27, 28, 27, 28, 54, 30, 39, 40, 32, 32, 43, 32, 39, 40, 39, 40, 43, 36
OFFSET
0,3
COMMENTS
It is conjectured that a(n) exists for all n >= 0.
EXAMPLE
a(19)=13 since 19=13+6=A233010(9)+A233572(3) and 13>6. There is no number in A233010 or A233572 smaller than 13 that satisfies the same condition.
MATHEMATICA
BTDigits[m_Integer, g_] :=
(*This is to determine digits of a number in balanced ternary notation.*)
Module[{n = m, d, sign, t = g},
If[n != 0, If[n > 0, sign = 1, sign = -1; n = -n];
d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++];
While[Length[t] < d, PrependTo[t, 0]];
t[[Length[t] + 1 - d]] = sign;
t = BTDigits[sign*(n - 3^(d - 1)), t]]; t];
BTpaleQ[n_Integer] :=
(*This is to query if a number is an element of sequence A233010.*)
Module[{t, trim = n/3^IntegerExponent[n, 3]},
t = BTDigits[trim, {0}]; t == Reverse[t]];
BTrteQ[n_Integer] :=
(*This is to query if a number is an element of sequence A233572.*)
Module[{t, trim = n/3^IntegerExponent[n, 3]},
t = BTDigits[trim, {0}]; DeleteDuplicates[t + Reverse[t]] == {0}];
sa = Select[Range[0, 30000], BTpaleQ[#] &];
(*This is to generate a limited list of A233010.*)
sb = Select[Range[0, 30000], BTrteQ[#] &];
(*This is to generate a limited list of A233572.*)
range = 68; Table[i1 = 0; i2 = 0;
While[If[sa[[i1 + 1]] < sb[[i2 + 1]], i1++; nh = sa[[i1]]; isa = 1,
i2++; nh = sb[[i2]]; isa = 0]; (2*nh) < n];
While[If[isa == 0, chk = MemberQ[sa, Abs[n - nh]],
chk = MemberQ[sb, Abs[n - nh]]]; ! chk,
If[sa[[i1 + 1]] < sb[[i2 + 1]], i1++; nh = sa[[i1]]; isa = 1, i2++;
nh = sb[[i2]]; isa = 0]];
If[isa == 0, m = sb[[i2]], m = sa[[i1]]]; m, {n, 0, range}]
KEYWORD
nonn,base,easy
AUTHOR
Lei Zhou, Dec 13 2013
STATUS
approved