login
A233565
Numerators of the autosequence preceding Br(n)=A229979(n)/(1 followed by A050932(n)).
1
0, 0, 0, 1, 2, 5, 5, 7, 7, 5, 5, 11, 11, 91, 91, -9, -9, 1207, 1207, -10849, -10849, 65879, 65879, -783127, -783127, 61098739, 61098739, -2034290233, -2034290233, 72986324461, 72986324461
OFFSET
0,5
COMMENTS
Br(n)=0, 1, 1, 1/2, 0, -1/6, 0, 1/6, 0, -3/10, 0, 5/6, 0, -691/210, 0,.. .
a(n) is the numerators of Bp2(n)=0, 0, 0, 1, 2, 5/2, 5/2, 7/3, 7/3, 5/2, 5/2, 11/5, 11/5, 91/30, 91/30,... . Bp2(n) is an autosequence like Br(n).
With possible future sequences we can write the array PB
1, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0,
1, 3/2, 1, 0, 0, 0, 0, 0, 0,
1, 5/3, 2, 1, 0, 0, 0, 0, 0,
1, 5/3, 5/2, 5/2, 1, 0, 0, 0, 0,
1, 49/30, 5/2, 7/2, 3, 1, 0, 0, 0,
1, 49/30, 7/3, 7/2, 14/3, 7/2, 1, 0, 0,
1, 58/35, 7/3, 3, 14/3, 6, 4, 1, 0,
1, 58/35, 5/2, 3, 7/2, 6, 15/2, 9/2, 1, etc.
The first column is A000012. The second A165142(n+1)/(1 followed by A100650(n)). The third is Bp2(n+1). The next others are built by the same way. From the second,every column is based on A164555(n)/A027642(n).
With negative (2*n+2)-th diagonals,the array without 0's is the triangle NPB. The sum of every row is
1, 0, 1/2, -1/3, 1/3, -11/30, 11/30, -12/35, 12/35, -79/210, 79/210,... .
See A176250(n+2)/A100650(n).
The inverse of NPB is A193815(n)/(A003056(n) with 1 instead of 0).
EXAMPLE
a(0)=a(1)=0, a(i)=numerators of 0+Br(0)=0, 0+Br(1)=1, 1+Br(2)=2, 2+Br(3)=5/2, 5/2+Br(4)=5/2,... .
MATHEMATICA
nmax = 30; Br[0] = 0; Br[1] = Br[2] = 1; Br[n_] := Numerator[2*n*BernoulliB[n-1]] / Denominator[n*BernoulliB[n-1]]; Bp2 = Join[{0, 0}, Table[Br[n], {n, 0, nmax-2}] // Accumulate]; a[n_] := Numerator[Bp2[[n+1]]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Dec 18 2013 *)
CROSSREFS
Cf. A233316.
Sequence in context: A004599 A197695 A245083 * A121359 A082087 A263317
KEYWORD
sign
AUTHOR
Paul Curtz, Dec 13 2013
EXTENSIONS
a(17)-a(30) from Jean-François Alcover, Dec 18 2013
STATUS
approved