login
A233556
Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^17.
1
1, 2, 4, 6, 10, 12, 116, 147, 324, 2070, 2902, 3663, 4994, 11531, 13554, 22421, 558905, 1242890, 1655487, 2021278, 2878297, 4790338, 7061177, 16875261, 21813642, 24563860, 58919808, 69676102, 85356321, 92610708, 205600836, 338430087, 343675600, 1176903461, 1698127637, 4657254361, 17421656611
OFFSET
1,2
COMMENTS
a(45) > 1.5*10^13. - Bruce Garner, Jun 02 2021
LINKS
Bruce Garner, Table of n, a(n) for n = 1..44 (first 37 terms from Robert Price, terms 38..39 from Karl-Heinz Hofmann)
EXAMPLE
10 is a term because 1 plus the sum of the first 10 primes^17 is 7404514559506748686057600 which is divisible by 10.
MATHEMATICA
p = 2; k = 0; s = 1; lst = {}; While[k < 40000000000, s = s + p^17; If[Mod[s, ++k] == 0, AppendTo[lst, k]; Print[{k, p}]]; p = NextPrime@ p] (* derived from A128169 *)
CROSSREFS
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
Sequence in context: A271884 A305836 A233349 * A087148 A297531 A334821
KEYWORD
nonn
AUTHOR
Robert Price, Dec 12 2013
STATUS
approved