OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
We have verified this for n up to 150000. For n = 124669, the least positive integer k with 2^k - 1 + q(n-k) prime is 13413.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..8000
Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166 [math.NT], 2013-2014.
Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2017.
EXAMPLE
a(6) = 1 since 2^2 - 1 + q(4) = 3 + 2 = 5 is prime.
a(10) = 1 since 2^4 - 1 + q(6) = 15 + 4 = 19 is prime.
a(41) = 1 since 2^{16} - 1 + q(25) = 65535 + 142 = 65677 is prime.
a(127) = 1 since 2^{21} - 1 + q(106) = 2097151 + 728260 = 2825411 is prime.
a(153) = 1 since 2^{70} - 1 + q(83) = 1180591620717411303423 + 101698 = 1180591620717411405121 is prime.
a(164) = 1 since 2^{26} - 1 + q(138) = 67108863 + 8334326 = 75443189 is prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[2^k-1+PartitionsQ[n-k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 08 2013
STATUS
approved