OFFSET
1,12
COMMENTS
A233285 is the main entry for this topic, see comments there.
LINKS
EXAMPLE
The factorial base representation (A007623(A000045(n))) of Fibonacci numbers look like this, from n=1 onward: 1, 1, 10, 11, 21, 110, 201, 311, 1120, 2101, 3221, 11000, 14221, 30221, 50120, 121011, 211201, 332220, ...
When we count the trailing zeros of each, we get 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, ..., the first terms of this sequence.
MATHEMATICA
a[n_] := Module[{k = Fibonacci[n], m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; FirstPosition[s, _?(# > 0&)][[1]] - 1]; Array[a, 100] (* Amiram Eldar, Feb 21 2024 *)
PROG
CROSSREFS
KEYWORD
nonn,base,changed
AUTHOR
Antti Karttunen, Dec 07 2013
STATUS
approved