

A233281


Numbers n such that the least Fibonacci number F_k which is a multiple of n has a prime index, i.e., k is in A000040.


5



2, 5, 13, 37, 73, 89, 113, 149, 157, 193, 233, 269, 277, 313, 353, 389, 397, 457, 557, 613, 673, 677, 733, 757, 877, 953, 977, 997, 1069, 1093, 1153, 1213, 1237, 1453, 1597, 1657, 1753, 1873, 1877, 1933, 1949, 1993, 2017, 2137, 2221, 2237, 2309, 2333, 2417, 2473
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers n such that A001177(n) is prime.
Each natural number n belongs to this sequence if the smallest Fibonacci number which it divides is a term of A030426.  Jon E. Schoenfield, Feb 28 2014
A092395 gives all the primes in this sequence (cf. Wikipedialink), and the first composite occurs as the 69th term, where a(69)=4181 while A092395(69)=4273. After 4181 (= 37*113 = F_19), the next term missing from A092395 is a(148)=10877 (= 73*149. A001177(10877) = 37, F_37 = 24157817 = 2221*10877). Both of these numbers (4181 and 10877) occur in various lists of Fibonaccirelated pseudoprimes. Sequence A238082 gives all composites occurring in this sequence.
If n is in this sequence then all divisors d > 1 of n are in this sequence.  Charles R Greathouse IV, Feb 04 2014
Composite members begin 4181, 10877, 75077, 162133, 330929, ....  Charles R Greathouse IV, Mar 07 2014


LINKS

Antti Karttunen and Charles R Greathouse IV, Table of n, a(n) for n = 1..2000 (first 157 terms from Karttunen)
Wikipedia, Fibonacci prime, section: Divisibility of Fibonacci numbers


FORMULA

A010051(A001177(a(n))) = 1.  Reinhard Zumkeller, Apr 04 2014


PROG

(Scheme, with Antti Karttunen's IntSeqlibrary)
(define A233281 (MATCHINGPOS 1 1 (lambda (n) (prime? (A001177 n)))))
(PARI) is(n)=my(k); while(fibonacci(k++)%n, ); isprime(k) \\ Charles R Greathouse IV, Feb 04 2014
(PARI) entry(p)=my(k=1); while(fibonacci(k++)%p, ); k;
is(n)={
if(n%2==0, return(n==2));
if(n<13, return(n==5));
my(f=factor(n), p, F);
if(f[1, 2]>1 && f[1, 1]<1e14, return(0));
p=entry(f[1, 1]);
F=fibonacci(p);
if(f[1, 2]>1 && F%f[1, 1]^f[1, 2], return(0));
if(!isprime(p), return(0));
for(i=2, #f~,
if(F%f[i, 1]^f[i, 2], return(0))
);
1
}; \\ Charles R Greathouse IV, Feb 04 2014
(Haskell)
a233281 n = a233281_list !! (n1)
a233281_list = filter ((== 1) . a010051 . a001177) [1..]
 Reinhard Zumkeller, Apr 04 2014


CROSSREFS

Disjoint union of A092395 and A238082. The first 68 terms are identical with A092395, after which follows the first case of the latter sequence, with a(69) = A238082(1) = 4181.
Cf. A000045, A001177, A001602, A030426, A051694, A060442, A086597, A233282.
Sequence in context: A262203 A175118 A092395 * A218551 A293297 A318485
Adjacent sequences: A233278 A233279 A233280 * A233282 A233283 A233284


KEYWORD

nonn


AUTHOR

Antti Karttunen, Dec 13 2013


STATUS

approved



