login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233249 a(1)=0; for k >= 1, let prime(k) map to 10...0 with k-1 zeros and let prime(k)*prime(m) map to the concatenation in binary of 2^(k-1) and 2^(m-1). For n >= 2, let the prime power factorization of n be mapped to r(n). a(n) is the term in A114994 which is c-equivalent to r(n) (see there our comment). 27
0, 1, 2, 3, 4, 5, 8, 7, 10, 9, 16, 11, 32, 17, 18, 15, 64, 21, 128, 19, 34, 33, 256, 23, 36, 65, 42, 35, 512, 37, 1024, 31, 66, 129, 68, 43, 2048, 257, 130, 39, 4096, 69, 8192, 67, 74, 513, 16384, 47, 136, 73, 258, 131, 32768, 85, 132, 71, 514, 1025, 65536, 75 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Let (10...0)_i (i>=0) denote 2^i in binary. Under (10...0)_i^k we understand a concatenation of (10...0)_i k times.

If n=Product_{i=1..m} p_i^t_i is the prime power factorization of n, then in the name r(n)=concatenation{i=1..m} ((10...0_(i-1)^t_i).

Numbers q and s are called c-equivalent if their binary expansions contain the same set of parts of the form 10...0. For example, 14=(1)(1)(10)~(10)(1)(1)=11.

Conversely, if n~n_1 such that n_1 is in A114994 and has c-factorization: n_1 = concatenation{i=m,...,0} ((10...0)_i^t_i), one can consider "converse" sequence {s(n)}, where s(n) = Product_{i=m..0} p_(i+1)^t_i.

For example, for n=22, n_1=21=((10)^2)(1), and s(22)=3^2*2=18.

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary binary expansion of k, prepending 0, taking first differences, and reversing again. Then a(n) is the number k such that the k-th composition in standard order consists of the prime indices of n in weakly decreasing order (the partition with Heinz number n). - Gus Wiseman, Apr 02 2020

LINKS

Peter J. C. Moses, Table of n, a(n) for n = 1..2500

FORMULA

A059893(a(n)) = A333220(n). A124767(a(n)) = A001221(n). - Gus Wiseman, Apr 02 2020

EXAMPLE

n=10=2*5 is mapped to (1)(100)~(100)(1). Since 9 is in A114994, then a(10)=9.

From Gus Wiseman, Apr 02 2020: (Start)

The sequence together with the corresponding compositions begins:

   0: ()             128: (8)             2048: (12)

   1: (1)             19: (3,1,1)          257: (8,1)

   2: (2)             34: (4,2)            130: (6,2)

   3: (1,1)           33: (5,1)             39: (3,1,1,1)

   4: (3)            256: (9)             4096: (13)

   5: (2,1)           23: (2,1,1,1)         69: (4,2,1)

   8: (4)             36: (3,3)           8192: (14)

   7: (1,1,1)         65: (6,1)             67: (5,1,1)

  10: (2,2)           42: (2,2,2)           74: (3,2,2)

   9: (3,1)           35: (4,1,1)          513: (9,1)

  16: (5)            512: (10)           16384: (15)

  11: (2,1,1)         37: (3,2,1)           47: (2,1,1,1,1)

  32: (6)           1024: (11)             136: (4,4)

  17: (4,1)           31: (1,1,1,1,1)       73: (3,3,1)

  18: (3,2)           66: (5,2)            258: (7,2)

  15: (1,1,1,1)      129: (7,1)            131: (6,1,1)

  64: (7)             68: (4,3)          32768: (16)

  21: (2,2,1)         43: (2,2,1,1)         85: (2,2,2,1)

For example, the Heinz number of (2,2,1) is 18, and the 21-st composition in standard order is (2,2,1), so a(18) = 21.

(End)

MATHEMATICA

primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];

Table[Total[2^Accumulate[primeMS[n]]]/2, {n, 100}] (* Gus Wiseman, Apr 02 2020 *)

CROSSREFS

The sorted version is A114994.

The primorials A002110 map to A246534.

A partial inverse is A333219.

The reversed version is A333220.

Cf. A000120, A029931, A035327, A048793, A066099, A070939, A124767, A124768, A228351, A272020, A333217, A333221.

Sequence in context: A245822 A069797 A158979 * A330573 A309369 A091893

Adjacent sequences:  A233246 A233247 A233248 * A233250 A233251 A233252

KEYWORD

nonn,base,look

AUTHOR

Vladimir Shevelev, Dec 06 2013

EXTENSIONS

More terms from Peter J. C. Moses, Dec 07 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 01:46 EST 2021. Contains 340300 sequences. (Running on oeis4.)